
KAGGLE COMPETITION: BNP PARIBAS CARDIF CLAIMS MANAGEMENT

Peidong Wang, Ke Tan

Department of Computer Science and Engineering
The Ohio State University, Columbus, OH 43210

ABSTRACT

This paper is a summarization of the machine learning tech-
niques we applied in the Kaggle competition BNP Paribas
Cardif Claims Management [1]. We propose three methods
to extract features from the original dataset and four statis-
tical models to analysis the features. Then we compare the
performances of different combinations of the features and
models and show our ranking in the competition.

Index Terms— Extended Features, Auto-Encoder, Linear
Regression Features, DNN, Bagged and Boosted Trees

1. INTRODUCTION

Kaggle competitions are famous for their real-world datasets
and highly competitive participants. The competitions can
test how well the machine learning techniques we know can
do in real-world problems. There are so many theories and
methods in the area of machine learning, but what really mat-
ter are the ones that can achieve good results in real-world
problems.

The Kaggle competition we pick is the BNP Paribas
Cardif Claims Management. The duration of this competition
is from February 3rd to April 18th. This competition is sup-
ported by an insurance company called BNP Paribas Cardif.
The company receives many claims from its customers ev-
eryday, and the claims need different levels of check. So that
the company wants to build a system which can automatize
the process of determining to which level a claim belongs.

An anonymized dataset with two categories of claims is
provided by BNP Paribas Cardif. The first category contains
claims for which approval could be accelerated, and the sec-
ond one contains claims for which additional information is
required (in other words, they cannot be accelerated). Each
data sample is a 131-dimension vector. The output is the prob-
ability for a sample to be in the first category. The training set
is consisted of 114322 samples, and the test set has 114394
samples. The performance is evaluated using Log Loss func-
tion.

The organization of the following paper is as follows.
First we will show the three feature extraction methods we
used in this competition. Then we will illustrate the four
statistical models. After that, the experimental results are

shown and analyzed. Finally, we will show our ranking in the
competition and make a conclusion.

2. FEATURE EXTRACTION

2.1. Data Preprocessing

Since the dataset provided by BNP Paribas Cardif derives
from the real world, some values of the sample vectors are
missing. Due to the data loss, preprocessing is needed to re-
store the data before feature extraction is performed. In addi-
tion, some values of the data are characters or strings, which
are extremely difficult to utilize directly.

To address these difficulties, we perform the preprocess-
ing on the original dataset as follows:
1. We set the missing values to zero.
2. We “encode” the character values following the alphabet-
ical order. For example, we replace the characters ’A’, ’B’,
’C’ and ’D’, with the numbers, 0, 1, 2 and 3, respectively.
3. We simply set the “string” values to zero.

Considering the data loss is possibly useful information,
we create a new binary-valued dimension that we call loss
indicator for each original dimension to indicate whether
the corresponding original value is missing or not. In other
words, for a particular dimension in a sample, we set its loss
indicator to 1 if it is missing, and 0 otherwise. Hence, we end
up with a set of 254-dimensional “new” samples.

2.2. Feature Generation

In our project, we explore the following three different types
of features:
1. We simply use the 254-dimensional samples generated by
the preprocessing module as the input of the models. We
name them extended features (EF).
2. We construct a deep auto-encoder (DAE) to derive a set of
512-dimensional features. The DAE has three hidden layers
and 512 sigmoidal neurons for each hidden layer. We feed the
DAE with EF as both input and target. Subsequently, we try
to minimize the minimum mean squared error (MMSE) be-
tween the target and the output using back-propagation (BP)
with mini-batches. Finally we derive the features by perform-
ing the well-trained DAE on EF and extracting the output vec-



tor of the hidden layer closest to the output layer. This vector
can be considered as a representation of the input vector, i.e.,
EF vector, in higher dimensional space. We call these features
DAE features (DAEF).
3. We aim to create features by linear regression of small
groups of EF features. Instead of randomly selecting the fea-
tures to take, only the first features of each group are selected
randomly, then we try each group with every new feature and
assign the feature to the group offering the greatest improve-
ment. We obtain a set of features that we call linear regression
features (LRF).

3. MODEL SELECTION

As far as we know, there are two kinds of models which have
shown their ability of scaling to large datasets, Deep Neural
Networks (DNNs) [2] and Bagged or Boosted Trees. So that
the model selection part is mainly focused on these two kinds
of models.

3.1. DNN

DNN becomes very popular after its successful uses in com-
puter vision and speech recognition. So that the first model
we choose is DNN. The details of the DNN model are as fol-
lows. It has three hidden layers, with 512 sigmoidal nodes
per layer. The output layer is consisted of two nodes, using
softmax and the cross entropy loss function.

3.2. Bagged or Boosted Trees

Bagging is short for Bootstrap Aggregation. It is mainly about
sampling and generating data. Boosting, on the other hand, is
more about making use of multiple models. These two meth-
ods are usually used in combination. There are two widely
used tree methods in real-world problems, Random Forest
and Gradient Boosted Trees. In addition to these two meth-
ods, a modified version of Random Forest, Extremely Ran-
domized Trees, will also be discussed in the following sub-
sections.

3.2.1. Random Forest

Random Forest [3] uses an ensemble of trees (weak learner)
to build a strong learner. Each tree in the ensemble is trained
by samples drawn with replacement from the training set. In
addition, the Random Forest method selects a random subset
of features at each candidate split in the tree learning process.

3.2.2. Extremely Random Trees (ExtraTreesClassifier)

Compared with Random Forest, Extremely Randomized
Trees [4] goes one step further in the way splits are com-
puted. For each candidate feature, instead of looking for the

most discriminative splitting point (threshold), the splitting
point is drawn at random.

3.2.3. eXtreme Gradient Boosting (XGBoost)

XGBoost [5] is an efficient and scalable implementation of
Gradient Boosting [6]. During each iteration in the boosting
process, the Gradient Tree Boosting method adds a new tree
to fit the difference between the desired output and the out-
put of current model. Denoting the model at time step m as
Fm(x), the desired output as y and the difference between the
desired output and the output of the model as h(x), we have
the following equation.

h(x) = y − Fm(x) (1)

Then we use a new tree to fit h(x), and thus updating the
model as follows.

Fm+1(x) = Fm(x) + h(x) (2)

Note that the residual y−F (x) can be viewed as the nega-
tive gradient of the squared error loss function 1

2×(y−F (x))2

over F (x). And this is where the name ”gradient” comes
from.

4. EXPERIMENTAL RESULTS

By performing feature extraction, we derive 254-dimensional
EF, 512-dimensional DAEF, and 131-dimensional LRF. The
expected output is the probability with which the sample be-
longs to the first category. The evaluation metric of the perfor-
mance adopted by the competition Log Loss function given
by

logloss = − 1

N

N∑
i=1

[yi log(pi) + (1− yi) log(1− pi)] (3)

where N is the number of samples, yi is the binary target, and
pi is the predicted probability that yi equals 1.

We explore the following six different combinations of
features and models:
(1) DNN + EF
(2) DNN + DAEF
(3) XGBoost + EF
(4) XGBoost + DAEF
(5) XGBoost + LRF
(6) ExtraTreesClassifier + LRF

Table 1 presents the performance of these model-feature
combinations on the test set. As we can see, ExtraTreesClas-
sifier+LRF performs the best. Comparing the result involving
random forest model, we find that the log loss is much larger
than the others. With the same features, XGBoost provides
slight improvement in the prediction performance, relative to
DNN. In addition, when LRF is used as input, a log loss gain



Table 1. Performance of Different Model-Feature Combina-
tions

Model + Features Logloss
DNN + EF 0.47470

DNN + DAEF 0.49768
XGBoost + EF 0.47320

XGBoost + DAEF 0.48231
XGBoost + LRF 0.48547

ExtraTreesClassifier + LRF 0.45037

Fig. 1. Performance of Different Model-Feature Combina-
tions

of 0.0351 is achieved by employing ExtraTreesClassifier in-
stead of XGBoost. Fig. 1 illustrates a clearer comparison.

With ExtraTreesClassifier and LRF, we rank the 436th
(top 15%) among 2947 teams on the Kaggle leaderboard.

5. CONCLUSION

In this paper, we explore six model-feature combinations in-
volving four different models and three types of features. The
experimental results indicate that a significant improvement
in prediction performance can be achieved by using Extra-
TreesClassifier as the model and LRF as the features. How-
ever, further research on both the models and the features is
demanded since the prediction performance can be impacted
by model configuration, such as parameter setting and selec-
tion of activation function.

6. REFERENCES

[1] “Kaggle competition: Bnp paribas cardif claims
management,” https://www.kaggle.com/c/
bnp-paribas-cardif-claims-management,
Accessed: 04-26-2016.

[2] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl,
Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Se-
nior, Vincent Vanhoucke, Patrick Nguyen, Tara N
Sainath, et al., “Deep neural networks for acoustic mod-
eling in speech recognition: The shared views of four re-
search groups,” Signal Processing Magazine, IEEE, vol.
29, no. 6, pp. 82–97, 2012.

[3] Andy Liaw and Matthew Wiener, “Classification and re-
gression by randomforest,” R news, vol. 2, no. 3, pp.
18–22, 2002.

[4] Pierre Geurts, Damien Ernst, and Louis Wehenkel, “Ex-
tremely randomized trees,” Machine learning, vol. 63,
no. 1, pp. 3–42, 2006.

[5] Tianqi Chen and Carlos Guestrin, “Xgboost: A scalable
tree boosting system,” arXiv preprint arXiv:1603.02754,
2016.

[6] Jerome H Friedman, “Greedy function approximation:
a gradient boosting machine,” Annals of statistics, pp.
1189–1232, 2001.


